NJ CONFERENCE, 2012

Complex Mixtures

The more you know the harder they get!

Charlotte J. Word, Ph.D.

- Lots of experience and familiarity with twoperson mixtures, literature, validation studies, training samples
- Published guidelines for interpretation
- Well developed SOPs for interpretation
- Routine amount of input DNA in amplification generally leads to nice profiles

High Certainty Leads to High Confidence

- > Only two contributors present
- Distinguishing stutter/artifacts from true alleles
- Use stochastic threshold to assess if all alleles are likely present vs. LT DNA with stochastic effects
- Assessing mixture ratio (distinguishable/ major:minor or indistinguishable mixture)
- Deducing second contributor if one contributor is known

Assume number of contributors is two:

- Aids in allele association at each locus based on peak height ratios
- May aid in genotype association for full profile based on mixture ratio
- Statistics calculations often straight forward

Multiple contributors 3- & 4- person (or more!)

Relatives in Mixtures

Complex Mixture Interpretation

Is hard because the parameters used to interpret two-person mixtures often may not be directly applicable to complex mixtures

How many contributors assumed for interpretation?

Complex Mixture – Allele Summary

- 6 alleles at 2 loci
- 5 alleles at 3 loci
- 4 alleles at 7 loci
- 3 alleles at 2 loci
- 2 alleles at 1 locus
- 1 allele at 0 loci
- 63 total alleles

Observed profile A B

14 total combinations

4 alleles

All heterozygotes and non-overlapping alleles

3 alleles

Heterozygote + heterozygote, one overlapping allele Heterozygote + homozygote, no overlapping alleles

2 alleles

Heterozygote + heterozygote, two overlapping alleles Heterozygote + homozygote, one overlapping allele Homozygote + homozygote, no overlapping alleles

1 allele

Homozygote + homozygote, overlapping allele

Observed profile

3-Person Mixtures

6 alleles

150 total combinations

All heterozygotes and non-overlapping alleles

5 alleles

Two heterozygotes and one homozygote Three heterozygotes, one overlapping allele

۸۸۸

ΛΛ

4 alleles

Six combinations of heterozygotes, homozygotes and overlapping alleles

3 alleles

Eight combinations of heterozygotes, homozygotes, and overlapping alleles

2 alleles

Five combinations of heterozygotes, homozygotes, and overlapping alleles

1 allele

All homozygotes, overlapping allele

Observed profile

4-Person Mixtures

8 alleles

All heterozygotes and non-overlapping alleles

MANY combinations

7 alleles

Several combinations of heterozygotes, homozygotes, and overlapping alleles

6 alleles

Many combinations

5 alleles Many combinations

4 alleles

Many combinations

3 alleles Many combinations

2 alleles Many combinations

1 allele All homozygotes, overlapping allele

Two-Person Simulated Mixtures – SGM⁺ Number of Alleles at each Locus

Table 1

The probability of observing a given number of alleles in a two-person mixtures for simulated profiles at the SGM^{+TM} loci

Loci	No. of alleles						
	1	2	3	4			
D3	0.011	0.240	0.559	0.190			
vWA	0.008	0.194	0.548	0.250			
D16	0.016	0.287	0.533	0.164			
D2	0.003	0.094	0.462	0.441			
D8	0.011	0.194	0.521	0.274			
D21	0.007	0.147	0.505	0.341			
D18	0.003	0.095	0.472	0.430			
D19	0.020	0.261	0.516	0.203			
THO	0.016	0.271	0.547	0.166			
FGA	0.003	0.116	0.500	0.381			
В	Buckleton et al. Forensic Science International: Genetics 1 (2007) 20-28						

Three-Person Simulated Mixtures – SGM+Table 2Number of Alleles at each LocusThe probability of observing a given number of alleles in a three-personmixtures for simulated profiles at the SGM+TM loci

Loci	No. of alleles showing							
	1	2	3	4	5	6		
D3	0.000	0.053	0.366	0.463	0.115	0.002		
vWA	0.000	0.037	0.285	0.468	0.194	0.016		
D16	0.001	0.086	0.397	0.411	0.100	0.005		
D2	0.000	0.008	0.104	0.385	0.393	0.110		
D8	0.001	0.041	0.258	0.436	0.236	0.029		
D21	0.000	0.023	0.192	0.428	0.302	0.055		
D18	0.000	0.007	0.109	0.392	0.396	0.096		
D19	0.003	0.078	0.352	0.401	0.152	0.014		
THO	0.001	0.074	0.395	0.439	0.088	0.002		
FGA	0.000	0.012	0.144	0.424	0.346	0.074		

Buckleton et al. Forensic Science International: Genetics 1 (2007) 20-28

Two-Person Mixture Studies Summary

- Always recognized as a mixture no risk of confusing as a single-source
 - Loci with 3 or 4 alleles
 - Peak height ratio imbalance at loci with 2 alleles
- Observe more loci with 2 or 3 alleles than 4 alleles – even when DNA from two heterozygous individuals were mixed
- 49 or fewer total alleles

Buckleton et al. Forensic Science International: Genetics 1 (2007) 20–28; Paoletti et al. J Forensic Sci, Nov. 2005, Vol. 50, No. 6; Haned et al. J Forensic Sci, January 2011, Vol. 56, No. 1; Perez et al., Croat Med J. 2011; 52:314-26

Three-Person Mixture Studies Summary

- No risk of confusing as a single-source
- Small risk of confusing with two-person mixture
 - Observe at least one locus with 5 or 6 alleles in ~97% of profiles (3% have ≤4 alleles)
 - 3% profiles look like 2-person mixture
 - Risk if LT-DNA, degradation, inhibition, primer mutation to look like 2-person mixture
- Most loci have 3 or 4 alleles
- 52-59 total alleles

Four-Person Mixture Studies Summary

- No risk of confusing as a single-source
- Very small risk of confusing with two-person mixture
 Likely to have peak height imbalance
- Very small number of loci with 8 alleles and very few with 7 alleles
 - High risk of confusing with three-person mixture
 - Risk if LT-DNA, degradation, inhibition, primer mutation
- ≥65 total alleles

Buckleton et al. Forensic Science International: Genetics 1 (2007) 20–28; Paoletti et al. J Forensic Sci, Nov. 2005, Vol. 50, No. 6; Haned et al. J Forensic Sci, January 2011, Vol. 56, No. 1; Perez et al., Croat Med J. 2011; 52:314-26

Four-Person Mixture Studies Summary

>70% of 4-person mixtures would NOT be recognized as 4-person mixtures based on allele count

Buckleton et al. Forensic Science International: Genetics 1 (2007) 20–28; Paoletti et al. J Forensic Sci, Nov. 2005, Vol. 50, No. 6; Haned et al. J Forensic Sci, January 2011, Vol. 56, No. 1; Perez et al., Croat Med J. 2011; 52:314-26

Five-, Six- Person Mixture Studies Summary

- >99% of 5 person mixtures would look like 4 person mixtures (~60%) or 3-person mixtures (~40%)
- Most 6 person mixtures would look like 5 person mixture (6%), 4-person mixtures (80%) or 3person mixtures (14%)

Wang, T.W., Kalet, P., Pendleton, J., Gilbert, K., Lucas, L. and Birdwell, J.D. 2005 The probable number of contributors to a STR DNA mixture. <u>http://www.promega.com/products/pm/genetic-identity/ishi-conference-proceedings/16th-ishi-poster-abstracts/</u>; Haned et al. J Forensic Sci, January 2011, Vol. 56,(1), 23-28

Complex Mixture – Allele Summary

- 6 alleles at 2 loci
- 5 alleles at 3 loci
- 4 alleles at 7 loci
- 3 alleles at 2 loci
- 2 alleles at 1 locus
- 1 allele at 0 loci
- 63 total alleles

A 4-person mixture @ 1:1:1:2 ratio!!

Mixtures with Relatives

Parent-Child Sibling-Sibling

Parent + Child

Mixture DNA Profile Pattern

ALLELE SHARE AT EACH LOCUS

P1 + P2	Genotypes of Children	% Sibling Allele Sharing
AB CD	AC or AD or BC or BD	0%, 50% or 100%
AB BC	AB or AC or BB or BC	0%, 50% or 100%
	AB/BA or AA or BB	0%, 50% or 100%
A B C	AC or BC	50% or 100%
	AA or BA	50% or 100%
A B	AB	100%
	AA P1 = Parent 1; P2 = Parent 2	100%

Mixtures with Relatives – Summary

Parent-Child

- Expect at least 50% allele share
- Expect at least one shared allele at each locus
- Maximum 3 alleles per locus (in absence of mutation)
- If test X loci, expect >X allele shares (9-14 Profiler Plus; 13-20 CODIS)

Mixtures with Relatives – Summary

Sibling-Sibling

- Expect at least 50% allele share overall, but variable: 7-16 Profiler Plus; 12-22 CODIS (≥X-1)
- Expect 0, 50 or 100% allele share at each locus
- Expect at least one allele share at 9-13 loci (CODIS data)

Mark Sample for Deletic

Are the contributors to this profile related?

Mark Sample for Deletic

Mixtures with Relatives – Working Backwards from Mixed DNA Profile

- With mixed DNA profile from unknowns, may not know if alleles are shared
- Data in the graphs are not helpful

Complex Mixtures More Uncertainty and Lack of Confidence

Peak vs. Artifacts
 Stutter?
 Pull-up?
 True Allelle?

More Uncertainty and Lack of Confidence
High likelihood that DNA from one or more contributors is below optimal range
LT DNA = stochastic effects
Missing alleles? (allele drop out)
Elevated Stutter? True allele vs. Stutter?
Allele drop-in?

More Uncertainty and Lack of Confidence

- Stochastic threshold
 - Only meaningful for the peaks below the value may be missing sister allele
 - ≻All alleles present?

More Uncertainty and Lack of Confidence > Stochastic threshold

>NO meaning for peaks above the value -

➤Major contributor?

Shared alleles? How many shares? Relatives or unrelated

Shared alleles

More Uncertainty and Lack of Confidence

- Peak height ratios have no meaning at most or all loci
 - Cannot use to associate alleles into genotypes
 - Ability to deduce other contributors decreased even if know one contributor

More Uncertainty and Lack of Confidence

Mixture ratio cannot be calculated

Different amount from each contributor likely with no way to determine

Cannot use to associate genotypes into profiles

More Uncertainty and Lack of Confidence

- Number of contributors maximum allele/minimum number often an underestimate
 - >What number to assume?

May need to interpret under multiple assumptions (especially if the conclusion changes)

False Inclusions

- Increased risk as # of alleles increase
- Cannot assign meaningful statistical frequency
- **Exclusions less likely**
 - Can anyone be excluded if LT DNA present?
 - ➢Partial "inclusions"
- Inconclusive reporting increased

Conclusions

- Criteria routinely used in crime laboratories for the interpretation of twoperson mixtures may not apply for most complex mixtures
- LT-DNA, degradation, inhibition play more significant role
- Additional complex mixtures need to be generated and evaluated for establishment of interpretation guidelines

Thank you!

Charlotte J. Word, Ph.D. cjword@comcast.net 301-527-1350