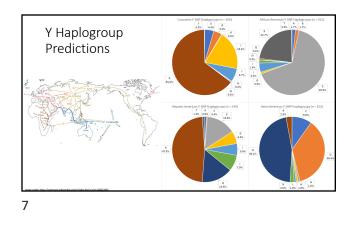
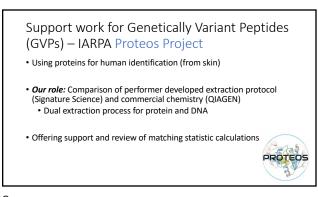
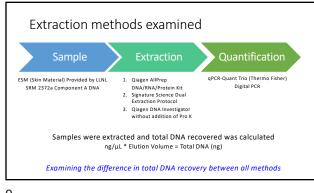
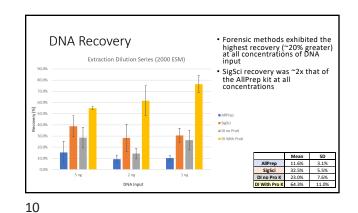


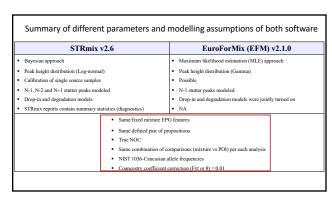
	Updates to SRM 2391d: PCR-Based DNA Profiling Standard									
	 Performing further analysis of the components and updating the Certificate of Analysis CE kits and NGS panels released since 2019 will be added 									
		CE Kits		NGS Panels						
	Promega	Thermo Fisher	Qiagen (Investigator)	Promega	Qiagen (Investigator)	Thermo Fisher (Precision ID)	Verogen (ForenSeg)			
	N/A	GlobalFiler IQC	26plex QS Argus Y-28 QS	PowerSeq 46GY	Identity I	Mito Control Region	Kintelligence			
		NGM SElect Express	IDplex Plus		Identity II	Ion Torrent Ampliseq Custom Y-SNP (859)	MainstAY			
		*Y Indel from GlobalFiler	IDplex GO!		Ancestry I		mtDNA Whole Genome			
			ESSplex SE QS Argus X-12 QS		Ancestry II		mtDNA Control Region			
*	Y Indel wil	l be added as an I	nformation Value		Microhaplotype STR		-3.4.			

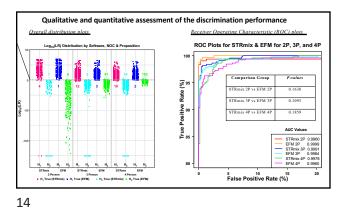



• The SRM 2391 series will continue to support the FBI-QAS and the validation and implementation of forensic marker systems

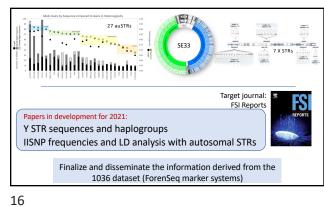

Marker Type	Number of Certified loci	Number of loci with Information values
Autosomal STR	35	13
Y-STR	28	3
X-STR	7	5
Mitochondrial DNA	-	Full mtGenome
Indel/Innuls	-	50 + Y indel
SNPs	-	323 + (10,230 + 859) = 11,412
ied allele calls supp	orted by sequence d	ata and CE-length based measure



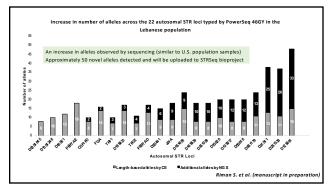


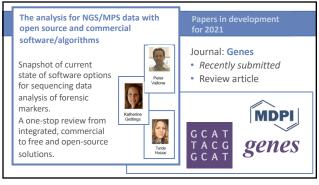


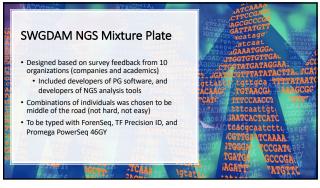
Riman et al. manuscript accepted in PLOS ONE	Markania Markania Branching Discrimination Performance and Likelihood Ratio Values for Two
PLOS ONE	Different Likelihood Ratio Systems Using the Provedit Dataset Sanh Rima, Hari Jun Peter M'Allone dei hannyi dong 2016 2012 0524 45891
consuct: é consuct: é consuct: Examining performance and likelihood ratios for two likelihood ratio systems using the PROVEDIt dataset cons from	two-patkara 762704 at 16271604040000 Evaluation of the ability of each software to discriminate between contributor and non-contributor sectoristication of the software softw
An independent study to examine the discrimination performance and understand similarities/differences of the assigned LR values, using two well-cited fully continuous PROBGEN models, STRmix (proprietary) and EuroForMix (open-source), and publicly available ground truth known mixture data (PROVEDIt database).	Study the distribution of differences in log10(LR) values between the two software. Discussion of cases of LR < 1 for H1-true tests and LR > for H2-true tests. Evaluation of apparent differences in log10(LR) values. Verbal classifications of the numeric LR values assigned by STRmix and EFM.
kilowii ilikuie uata (FROVEDIL database).	https://www.biorxiv.org/content/10.1101/2021.05.26.445891v1



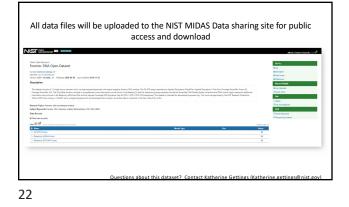
Number of contributors	Number of mixtures of varying DNA quality*	Propositions	Number of H1-true tests	Number of H2-true tests	Mixture ratios	Template amount (pg (minor)
2	154	H1: POI + U1 H2: U1 + U2	308	308	1:1 1:2 1:4 1:9	15 - 125
3	147	H1: POI + U1 + U2 H2: U1 + U2 + U3	441	441	1:1:1 1:2:1 1:2:2 1:4:1 1:4:4 1:9:1 1:9:9	15 - 125
4	127	H1: POI + U1 + U2 + U3 H2: U1 + U2 + U3 + U4	508	508	1:1:1:1 1:1:2:1 1:1:4:1 1:1:9:1 1:2:2:1 1:4:4:1 1:4:4:4 1:9:9:1	15 - 125

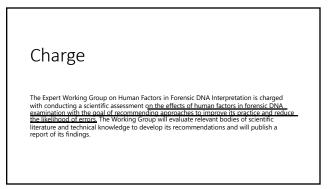

Sequencing Projects (brief updates) • SNP and Y STR manuscripts • Lebanese population samples • Informatics review article • SWGDAM NGS mixture plate Bode microhaplotypes • STRSeq uture STRAND



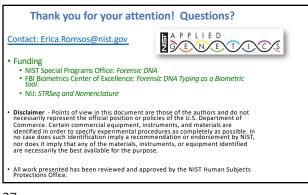


Characterization of autosomal STR sequence variations in Lebanese population


- Collaborative project with Susan Walsh's laboratory at IUPUI
- Collection of 194 saliva samples from unrelated individuals (85 males and 109 females) of selfreported Lebanese ancestry
- Autosomal STR loci typed by both PowerPlex Fusion 6C (CE-based method) and PowerSeg 46GY System Prototype (NGS-based method) - 22 autosomal STR loci in common
- Identify and characterize sequence variations
- · Conduct population genetics data analysis for both the length-based and sequence-based allele calls
- Compare frequencies to geographically neighboring Levantine and Mediterranean countries



	1	2	1	4	5	6	7		9	10	11	12
A	3P_1-1-98_0.25	3P_1-49-50_1	3P_1-1-98D_1	3P_1D-1D-98D_1	3P_1-1-98_0.25	4P_1-1-1-97_1	# 10-10-40-40_1 1 D D	49_21-23-27-29_1	3P_1-1-98_0.25	SP_1-1-1-1-96_1	∞ս5գԹա₿ւս	SP_10-22-22-21
8	37_1-1-98_1	2 J-41-49 1	32.3-340_1	39_30-30-940_1	3P_1-1-98_1	47_3-3-341_1	49_20-20-30-30_1	49_15-20-30-35_3	32_1-1-98_1	9,3-3-3-88,1	99_1-1-32-33-33_1	9,20.20.20.20
c	32_1-1-98_4	39_5-47-48_1	¥_55900_1	39_50-50-900_1	3P_1-1-98_4	-48-A	@_1-33-33-33_1	Ø_5-15-15-45_1	32_1-1-98_4	ς 2.γ	9,3-3-31-31-32 1	
D	32,3-3-94,0.25	39_10-45-45_1	3P_10-10-80D_1	3P_100-100-800_1	32,3-3-94_0.25	4P_10-10-10-70_1	# 1-12-12-11 1	47_1-14-35-50_1	22,3-3-94,0.25	5P_10-10-10-10-60_1	\$9_5-5-30-30-30_1	
E	12.1011	39_1-33-66_1	3P_1-33-66D_1	39_10-330-660_1	12-3-3-94_1	4P_20-20-20-40_1	@_5-31-32-32_1	49_10-10-30-50_3	12.2.91	59_15-15-15-15-40_1	5P_10-10-26-27-27_1	5P_1-9-20-30-4
F	32_3-3-94_4	39_3-32-45_1	1029-11-12-050_1	39_30-320-650_1	3P_3-3-94_4	47_1-1-49-49_1	4P_10-30-30-30_1	49_10-20-20-50_3	32_3-3-94_4	5₽B	∞_1 <mark>5₀₽≈</mark> ₽_1	59_14-17-20-21
G	3P_5-5-90_0.25	1P_5-31-64_1	39,5-31-640,1	39_50-310-640_1	3P_5-5-90_0.25	e HaaB	€P_20-26-27-27_1	49,55-1040 I	3P_5-5-90_0.25	12_0.5	1P_0.125	1P_0.03125
н	12,5-5-90_1	37-10-30-60_1	1P_10-30-60D_1	3P_100-300-600_1	JP_5-5-90_1	49_1-5-47-47_1	·AP=P:	49_5-5-20-70_1	12,5-5-92,1	19_0.25	1P_0.0625	19_0.015625
Columns 1, 5, and 9 are replicates of the same 3P mixture sensitivity series Ranges in quantity from 0.25 ng/µL to 4 ng/µL												
	C	olumn									series	



	A/QC
	Testimony and Reporting
	Research, Education, and Training
Key Topics	Interpretation and Technology
Each subgroup will take the lead on	Hanagement
writing about their topics.	Sea Work Environment
Research needs are being covered by each subgroup.	Q Research Needs
25	

	##	First convened in-person in February 2020 with 24 members						
	~	15 x Full Group webinars since June 2020						
Updates	****	Currently have 27 members spanning academia, practitioners, researchers, legal community members						
		200+ pages of draft report written						
	E	Report is in the first round of internal reviews and edits						
urrently in the first round of internal review of the draft report.								

